Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.907
Filtrar
1.
J Phys Chem B ; 128(15): 3643-3651, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38588455

RESUMO

Ionizable lipid-containing lipid nanoparticles (LNPs) are regarded as promising nonviral vectors for gene therapy delivery systems. Rationale design of the ionizable lipid structure based on initial screening of ionizable lipid molecule libraries combined with systematic comparison and analysis on the physical chemical parameters related to delivery efficiency greatly accelerated the discovery of novel LNP candidates for delivering various nucleic acid therapeutics like mRNAs (mRNAs). Based on the copper-catalyzed azide-alkyne click reaction, which is highly efficient and biocompatible, we were able to obtain the lipid molecule library containing a common triazole moiety between different lipid tails and various substituents as hydrophilic head groups. Herein, we systematically investigated the change of pKa values of different ionizable lipid molecules with different substituents as head groups in the click-based lipid library, mapping the pKa value change to different steps in the process of the LNP assembly and mRNA delivery. Systematic analyses on the data including the pKa value of the ionized lipids and the encapsulation and delivery efficiency of mRNA in LNPs with these ionized lipids provided the possibility of rational design on the head and tail structure for the triazole containing ionized lipids to realize highly efficient delivery of different mRNAs.


Assuntos
Lipídeos , Lipossomos , Nanopartículas , RNA Interferente Pequeno/química , RNA Mensageiro , Lipídeos/química , Nanopartículas/química , Triazóis
2.
Int J Biol Macromol ; 264(Pt 2): 130638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460652

RESUMO

The rational modification of siRNA molecules is crucial for ensuring their drug-like properties. Machine learning-based prediction of chemically modified siRNA (cm-siRNA) efficiency can significantly optimize the design process of siRNA chemical modifications, saving time and cost in siRNA drug development. However, existing in-silico methods suffer from limitations such as small datasets, inadequate data representation capabilities, and lack of interpretability. Therefore, in this study, we developed the Cm-siRPred algorithm based on a multi-view learning strategy. The algorithm employs a multi-view strategy to represent the double-strand sequences, chemical modifications, and physicochemical properties of cm-siRNA. It incorporates a cross-attention model to globally correlate different representation vectors and a two-layer CNN module to learn local correlation features. The algorithm demonstrates exceptional performance in cross-validation experiments, independent dataset, and case studies on approved siRNA drugs, and showcasing its robustness and generalization ability. In addition, we developed a user-friendly webserver that enables efficient prediction of cm-siRNA efficiency and assists in the design of siRNA drug chemical modifications. In summary, Cm-siRPred is a practical tool that offers valuable technical support for siRNA chemical modification and drug efficiency research, while effectively assisting in the development of novel small nucleic acid drugs. Cm-siRPred is freely available at https://cellknowledge.com.cn/sirnapredictor/.


Assuntos
Algoritmos , Aprendizado de Máquina , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química
3.
Int J Biol Macromol ; 264(Pt 2): 130783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471603

RESUMO

Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.


Assuntos
Glioblastoma , Nanopartículas , Humanos , RNA Interferente Pequeno/química , Poloxâmero/química , Micelas , Glioblastoma/metabolismo , Inativação Gênica , Linhagem Celular Tumoral , Nanopartículas/química , Microambiente Tumoral
4.
J Chromatogr A ; 1721: 464847, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38552370

RESUMO

In recent years, several small interfering RNA (siRNA) therapeutics have been approved, and most of them are phosphorothioate (PS)-modified for improving nuclease resistance. This chemical modification induces chirality in the phosphorus atom, leading to the formation of diastereomers. Recent studies have revealed that Sp and Rp configurations of PS modifications of siRNAs have different biological properties, such as nuclease resistance and RNA-induced silencing complex (RISC) loading. These results highlight the importance of determining diastereomeric distribution in quality control. Although various analytical approaches have been used to separate diastereomers (mainly single-stranded oligonucleotides), it becomes more difficult to separate all of them as the number of PS modifications increases. Despite siRNA exhibits efficacy in the double-stranded form, few reports have examined the separation of diastereomers in the double-stranded form. In this study, we investigated the applicability of non-denaturing anion-exchange chromatography (AEX) for the separation of PS-modified siRNA diastereomers. Separation of the four isomers of the two PS bonds tended to improve in the double-stranded form compared to the single-stranded form. In addition, the effects of the analytical conditions and PS-modified position on the separation were evaluated. Moreover, the elution order of the Sp and Rp configurations was confirmed, and the steric difference between them, i.e., the direction of the anionic sulfur atom, appeared to be important for the separation mechanism in non-denaturing AEX. Consequently, all 16 peak tops of the four PS modifications were detected in one sequence, and approximately 30 peak tops were detected out of 64 isomers of six PS bonds, indicating that non-denaturing AEX is a useful technique for the quality control of PS-modified siRNA therapeutics.


Assuntos
Cromatografia , Oligonucleotídeos , Fosfatos , RNA Interferente Pequeno/química , Oligonucleotídeos/química , Isomerismo , Ânions
5.
Bioorg Med Chem ; 104: 117693, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552598

RESUMO

Synthetic siRNA molecules without chemical modifications are easily degraded in the body, and 2'-O-modifications are frequently introduced to enhance stability. However, such chemical modifications tend to impact the gene knockdown potency of siRNA negatively. To circumvent this problem, we previously developed a prodrug-type siRNA bearing 2'-O-methyldithiomethyl (MDTM) groups, which can be converted into unmodified siRNA under the reductive environment in cells. In this study, we developed a nuclease-resistant prodrug-type 2'-O-MDTM siRNA for deployment in future animal experiments. To rationally design siRNA modified with a minimal number of 2'-O-MDTM nucleotide residues, we identified the sites susceptible to nuclease digestion and tolerant to 2'-O-methyl (2'-OMe) modification in the antisense strand of apolipoprotein B-targeted siRNA. Subsequently, we optimized the positions where the 2'-OMe and 2'-O-MDTM groups should be incorporated. siRNA bearing the 2'-O-MDTM and 2'-OMe groups at their respective optimized positions exhibited efficient knockdown potency in vitro and enhanced stability in serum.


Assuntos
Pró-Fármacos , RNA Interferente Pequeno/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Inativação Gênica , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo
6.
ACS Appl Mater Interfaces ; 16(11): 13399-13410, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466900

RESUMO

Although lipid nanoparticles (LNPs) are the predominant nanocarriers for short-interfering RNA (siRNA) delivery, most therapies use nearly identical formulations that have taken 30 years to design but lack the diverse property ranges necessary for versatile application. This dearth in variety and the extended timeline for implementation are attributed to a limited understanding of how LNP properties facilitate overcoming biological barriers. Herein, a simple kinetic model was developed by using major rate-limiting steps for siRNA delivery, and this model enabled the identification of a critical parameter to predict LNP efficacy without extensive experimental testing. A volume-averaged log D, the "solubility" of charged molecules as a function of pH weighted by component volume fractions, resulted in a good correlation between LNP composition and siRNA delivery. Both the effects of modifying the structures of ionizable lipids and LNP composition on gene silencing were easily captured in the model predictions. Thus, this approach provides a robust LNP structure-activity relationship to dramatically accelerate the realization of effective LNP formulations.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Lipossomos , RNA Interferente Pequeno/química , Nanopartículas/química
7.
Biosens Bioelectron ; 251: 116065, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330772

RESUMO

Lipid nanoparticles (LNPs) containing ionizable cationic lipids are proven delivery systems for therapeutic nucleic acids, such as small interfering RNA (siRNA). It is important to understand the relationship between the interior pH of LNPs and the pH of the external environment to understand LNP formulation and function. Here, we developed a simple and rapid approach for determining the pH of the LNP core using a pH-sensitive fluorescent dye-based DNA probe. LNP siRNA systems containing pH-responsive DNA probes (LNP-siRNA&DNA) were generated by rapid mixing of lipids in ethanol and pH 4 aqueous buffer containing siRNA and DNA probes. We demonstrated that DNA probes were readily encapsulated in LNP systems and were sequestered into an environment at a high concentration as evidenced by an inter-probe FRET signal. It was shown that the pH of LNP encapsulated probes closely follows the pH increase or decrease of the external environment. This indicates that the clinically approved LNP RNA systems with similar lipid compositions (e.g., Onpattro and Comirnaty) are highly permeable to protons and that the pH of the interior environment closely mirrors the external environment. The pH-dependent response of the probe in LNPs was also confirmed under buffer conditions at various pHs. Furthermore, we showed that the pH-sensitive DNA probe can be incorporated into LNP systems at levels that allow the pH response to be monitored at a single LNP level using convex lens-induced confinement (CLiC) confocal microscopy. Direct visualization of the internal pH of single particles with the fluorescent DNA probe was achieved by CLiC for LNP-siRNA&DNA systems formulated under both high and normal ionic strength conditions.


Assuntos
Técnicas Biossensoriais , Lipossomos , Nanopartículas , Corantes Fluorescentes , Lipídeos/química , Nanopartículas/química , RNA Interferente Pequeno/química , DNA , Sondas de DNA
8.
ACS Chem Biol ; 19(2): 249-253, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38314716

RESUMO

Chemical modifications of RNA are important tools for the development of RNA therapeutics. The present study reports a novel RNA backbone modification that replaces the negatively charged phosphate with a positively charged amine linkage. Despite being thermally destabilizing in RNA duplexes, the amine linkage caused a relatively modest decrease of activity of a modified short interfering RNA (siRNA). At position 2 of the guide strand, the amine modification strongly enhanced the specificity of siRNA while causing an ∼5-fold drop of on-target activity. These results support the future development of amines as cationic RNA modifications and novel tools to modulate protein-RNA interactions.


Assuntos
Aminas , RNA de Cadeia Dupla , RNA Interferente Pequeno/química , Interferência de RNA
9.
J Org Chem ; 89(6): 3747-3768, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394362

RESUMO

In this study, we designed the 4'-C-acetamidomethyl-2'-O-methoxyethyl (4'-C-ACM-2'-O-MOE) uridine and thymidine modifications, aiming to test them into small interfering RNAs. Thermal melting studies revealed that incorporating a single 4'-C-ACM-2'-O-MOE modification in the DNA duplex reduced thermal stability. In contrast, an increase in thermal stability was observed when the modification was introduced in DNA:RNA hybrid and in siRNAs. Thermal destabilization in DNA duplex was attributed to unfavorable entropy, which was mainly compensated by the enthalpy factor to some extent. A single 4'-C-ACM-2'-O-MOE thymidine modification at the penultimate position of the 3'-end of dT20 oligonucleotides in the presence of 3'-specific exonucleases, snake venom phosphodiesterase (SVPD), demonstrated significant stability as compared to monomer modifications including 2'-O-Me, 2'-O-MOE, and 2'-F. In gene silencing studies, we found that the 4'-C-ACM-2'-O-MOE uridine or thymidine modifications at the 3'-overhang in the passenger strand in combination with two 2'-F modifications exhibited superior RNAi activity. The results suggest that the dual modification is well tolerated at the 3'-end of the passenger strand, which reflects better siRNA stability and silencing activity. Interestingly, 4'-C-ACM-2'-O-MOE-modified siRNAs showed considerable gene silencing even after 96 h posttransfection; it showed that our modification could induce prolonged gene silencing due to improved metabolic stability. Molecular modeling studies revealed that the introduction of the 4'-C-ACM-2'-O-MOE modification at the 3'-end of the siRNA guide strand helps to anchor the strand within the PAZ domain of the hAgo2 protein. The overall results indicate that the 4'-C-ACM-2'-O-MOE uridine and thymidine modifications are promising modifications to improve the stability, potency, and hAgo2 binding of siRNAs.


Assuntos
Ácidos Nucleicos , RNA Interferente Pequeno/química , DNA , Timidina , Uridina/química
10.
Eur J Pharm Biopharm ; 197: 114219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368913

RESUMO

Nucleic acid-based therapeutics encapsulated into lipid nanoparticles (LNPs) can potentially target the root cause of genetic skin diseases. Although nanoparticles are considered impermeable to skin, research and clinical studies have shown that nanoparticles can penetrate into skin with reduced skin barrier function when administered topically. Studies have shown that epidermal keratinocytes express the low-density lipoprotein receptor (LDLR) that mediates endocytosis of apolipoprotein E (apoE)-associated nanoparticles and that dermal fibroblasts express mannose receptors. Here we prepared LNPs designed to exploit these different endocytic pathways for intracellular mRNA delivery to the two most abundant skin cell types, containing: (i) labile PEG-lipids (DMG-PEG2000) prone to dissociate and facilitate apoE-binding to LNPs, enabling apoE-LDLR mediated uptake in keratinocytes, (ii) non-labile PEG-lipids (DSPE-PEG2000) to impose stealth-like properties to LNPs to enable targeting of distant cells, and (iii) mannose-conjugated PEG-lipids (DSPE-PEG2000-Mannose) to target fibroblasts or potentially immune cells containing mannose receptors. All types of LNPs were prepared by vortex mixing and formed monodisperse (PDI âˆ¼ 0.1) LNP samples with sizes of 130 nm (±25%) and high mRNA encapsulation efficiencies (≥90%). The LNP-mediated transfection potency in keratinocytes and fibroblasts was highest for LNPs containing labile PEG-lipids, with the addition of apoE greatly enhancing transfection via LDLR. Coating LNPs with mannose did not improve transfection, and stealth-like LNPs show limited to no transfection. Taken together, our studies suggest using labile PEG-lipids and co-administration of apoE when exploring LNPs for skin delivery.


Assuntos
Lipossomos , Receptor de Manose , Nanopartículas , Polietilenoglicóis , Humanos , Manose , Fosfatidiletanolaminas , Nanopartículas/química , RNA Mensageiro/genética , Apolipoproteínas E , RNA Interferente Pequeno/química
11.
Nat Commun ; 15(1): 1303, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347001

RESUMO

Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.


Assuntos
Vacinas contra COVID-19 , Lipossomos , Nanopartículas , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Lipídeos/química , Nanopartículas/química , Transfecção
12.
Bioorg Chem ; 144: 107143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309000

RESUMO

In this study, we report the synthesis of two formacetal (FA)-linked dimer building blocks, namely 2'-O-methyluridyl-2'-O-methyluridine and 2'-O-methyluridyl-2'-O-aminoethyluridine. We utilize the former dimer in combination with (S)-5'-C-aminopropyl-2'-O-methylnucleosides (5'-APs) as a neutral trimer unit, and the latter dimer as a cationic unit. Double-stranded RNA containing the neutral trimer unit exhibits greater stability compared to the cationic unit and maintains nuclease stability in a serum-containing buffer. Furthermore, this unit appears to establish additional hydrogen bonds with complementary bases, as supported by modeling simulations and mismatch melting temperature assays. Importantly, siRNAs modified with this unit enhance RNA interference activity in cultured cells. These findings suggest that the trimer unit holds promise for therapeutic siRNAs.


Assuntos
Endonucleases , Nucleosídeos , Nucleosídeos/química , RNA Interferente Pequeno/química , Interferência de RNA , Temperatura
13.
Pharm Res ; 41(3): 501-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326530

RESUMO

PURPOSE: This study aimed to test the feasibility of using Small Angle X-ray Scattering (SAXS) coupled with Density from Solution Scattering (DENSS) algorithm to characterize the internal architecture of messenger RNA-containing lipid nanoparticles (mRNA-LNPs). METHODS: The DENSS algorithm was employed to construct a three-dimensional model of average individual mRNA-LNP. The reconstructed models were cross validated with cryogenic transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) to assess size, morphology, and internal structure. RESULTS: Cryo-TEM and DLS complemented SAXS, revealed a core-shell mRNA-LNP structure with electron-rich mRNA-rich region at the core, surrounded by lipids. The reconstructed model, utilizing the DENSS algorithm, effectively distinguishes mRNA and lipids via electron density mapping. Notably, DENSS accurately models the morphology of the mRNA-LNPs as an ellipsoidal shape with a "bleb" architecture or a two-compartment structure with contrasting electron densities, corresponding to mRNA-filled and empty lipid compartments, respectively. Finally, subtle changes in the LNP structure after three freeze-thaw cycles were detected by SAXS, demonstrating an increase in radius of gyration (Rg) associated with mRNA leakage. CONCLUSION: Analyzing SAXS profiles based on DENSS algorithm to yield a reconstructed electron density based three-dimensional model can be a useful physicochemical characterization method in the toolbox to study mRNA-LNPs and facilitate their development.


Assuntos
Elétrons , Lipossomos , Nanopartículas , Raios X , Espalhamento a Baixo Ângulo , RNA Mensageiro/química , Difração de Raios X , Nanopartículas/química , Lipídeos/química , RNA Interferente Pequeno/química
14.
Chem Rev ; 124(3): 929-1033, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284616

RESUMO

RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.


Assuntos
RNA , RNA/uso terapêutico , RNA Interferente Pequeno/química , Estudos Prospectivos , Interferência de RNA
15.
Nanoscale ; 16(7): 3525-3533, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38273800

RESUMO

A deeper knowledge on the formation and biological fate of polymer based gene vectors is needed for their translation into therapy. Here, polyplexes of polyethyleneimine (PEI) and silencing RNA (siRNA) are formed with theoretical N/P ratios of 2, 4 and 12. Fluorescence correlation spectroscopy (FCS) is used to study the formation of polyplexes from fluorescently labelled PEI and siRNA. FCS proves the presence of free PEI. From the analysis of the autocorrelation functions it was possible to determine the actual stoichiometry of polyplexes. FCS and fluorescence cross correlation spectroscopy (FCCS) are used to follow the fate of the polyplexes intracellularly. Polyplexes disassemble after 1 day inside cells. Positron emission tomography (PET) studies are conducted with radiolabelled polyplexes prepared with siRNA or PEI labelled with 2,3,5,6-tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]F-PyTFP). PET studies in healthy mice show that [18F]siRNA/PEI and siRNA/[18F]PEI polyplexes show similar biodistribution patterns with limited circulation in the bloodstream and accumulation in the liver. Higher activity for [18F]PEI in the kidney and bladder suggests the presence of free PEI.


Assuntos
Polietilenoimina , RNA de Cadeia Dupla , Animais , Camundongos , Polietilenoimina/química , RNA Interferente Pequeno/química , Distribuição Tecidual , Espectrometria de Fluorescência , Tomografia por Emissão de Pósitrons
16.
J Colloid Interface Sci ; 660: 66-76, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241872

RESUMO

The development of lipid nanoparticle (LNP) based therapeutics for delivery of RNA has triggered the advance of new strategies for formulation, such as high throughput microfluidics for precise mixing of components into well-defined particles. In this study, we have characterised the structure of LNPs throughout the formulation process using in situ small angle x-ray scattering in the microfluidic chip, then by sampling in the subsequent dialysis process. The final formulation was investigated with small angle x-ray (SAXS) and neutron (SANS) scattering, dynamic light scattering (DLS) and cryo-TEM. The effect on structure was investigated for LNPs with a benchmark lipid composition and containing different cargos: calf thymus DNA (DNA) and two model mRNAs, polyadenylic acid (polyA) and polyuridylic acid (polyU). The LNP structure evolved during mixing in the microfluidic channel, however was only fully developed during the dialysis. The colloidal stability of the final formulation was affected by the type of incorporated nucleic acids (NAs) and decreased with the degree of base-pairing, as polyU induced extensive particle aggregation. The main NA LNP peak in the SAXS data for the final formulation were similar, with the repeat distance increasing from polyU

Assuntos
Lipídeos , Lipossomos , Nanopartículas , Espalhamento a Baixo Ângulo , Lipídeos/química , Difração de Raios X , Nanopartículas/química , DNA , RNA Mensageiro , RNA Interferente Pequeno/química
17.
J Control Release ; 367: 316-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253202

RESUMO

A bioreducible Zn (II)-adenine multifunctional module (BS) and Tet1 peptide were used to modify low-molecular-weight PEI3.5k (polyethyleneimine with molecular weight of 3.5 kDa)into a siRNA vector Zn-PB-T with high transfection efficiency in neurons. A GSH-responsive breakable disulfide spacer was introduced into BS to realize the controlled release of siRNA from the polyplexes in cytoplasm. Zn-PB showed >90% transfection rates in multiple cell lines (3 T3, HK-2, HepG2, 293 T, HeLa, PANC-1),and 1.8-folds higher EGFP knockdown rates than commercial Lipo2k in normal cell line 293 T and cancer cell line HepG2. And Zn-PB-T1 showed 4.7-4.9- and 8.0-8.1-folds higher transfection efficiency comparing to commercial Lipo2k and PEI25k (polyethyleneimine with molecular weight of 25 kDa) in PC12 cells respectively, 2.1-fold EGFP gene silencing efficiency (96.6% EGFP knockdown rates) superior to commercial Lipo2k in neurons. In Parkinson's model, Zn-PB-T1/SNCA-siRNA can effectively protect neurons against MPP+-induced cell death and apoptosis, increasing the cell survival rate to 84.6% and reducing the cell apoptosis rate to 10.8%. This work demonstrated the promising application prospects of the resulting efficient siRNA carriers in siRNA-mediated gene therapy of Parkinson's disease.


Assuntos
Doença de Parkinson , Polieletrólitos , Ratos , Animais , Humanos , RNA Interferente Pequeno/química , Doença de Parkinson/genética , Doença de Parkinson/terapia , Polietilenoimina/química , Zinco , Transfecção , Células HeLa , Peptídeos
18.
ACS Nano ; 18(2): 1464-1476, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175970

RESUMO

The mRNA technology has emerged as a rapid modality to develop vaccines during pandemic situations with the potential to protect against endemic diseases. The success of mRNA in producing an antigen is dependent on the ability to deliver mRNA to the cells using a vehicle, which typically consists of a lipid nanoparticle (LNP). Self-amplifying mRNA (SAM) is a synthetic mRNA platform that, besides encoding for the antigen of interest, includes the replication machinery for mRNA amplification in the cells. Thus, SAM can generate many antigen encoding mRNA copies and prolong expression of the antigen with lower doses than those required for conventional mRNA. This work describes the morphology of LNPs containing encapsulated SAM (SAM LNPs), with SAM being three to four times larger than conventional mRNA. We show evidence that SAM changes its conformational structure when encapsulated in LNPs, becoming more compact than the free SAM form. A characteristic "bleb" structure is observed in SAM LNPs, which consists of a lipid-rich core and an aqueous RNA-rich core, both surrounded by a DSPC-rich lipid shell. We used SANS and SAXS data to confirm that the prevalent morphology of the LNP consists of two-core compartments where components are heterogeneously distributed between the two cores and the shell. A capped cylinder core-shell model with two interior compartments was built to capture the overall morphology of the LNP. These findings provide evidence that bleb two-compartment structures can be a representative morphology in SAM LNPs and highlight the need for additional studies that elucidate the role of spherical and bleb morphologies, their mechanisms of formation, and the parameters that lead to a particular morphology for a rational design of LNPs for mRNA delivery.


Assuntos
Lipossomos , Nanopartículas , RNA Mensageiro/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , Lipídeos/química , RNA Interferente Pequeno/química
19.
Bioorg Med Chem ; 100: 117616, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295488

RESUMO

Herein, we report the synthesis of 2'-O-alkyl/2'-fluoro-N3-methyluridine (2'-O-alkyl/2'-F-m3U) phosphoramidites and their incorporation in DNA and RNA oligonucleotides. The duplex binding affinity and base discrimination studies showed that all 2'-O-alkyl/2'-F-m3U modifications significantly decreased the thermal stability and base-pairing discrimination ability. Serum stability study of dT20 with 2'-O-alkyl-m3U modification exhibited excellent nuclease resistance when incubated with 3'-exonucleases (SVPD) or 5'-exonucleases (PDE-II) as compared to m3U, 2'-F, 2'-OMe modified oligonucleotides. MD simulation studies with RNA tetradecamer duplexes illustrated that the m3U and 2'-O-methyl-m3U modifications reduce the duplex stabilities by disrupting the Watson-Crick hydrogen bonding and base-stacking interactions. Further molecular modelling investigations demonstrated that the 2'-O-propyl-m3U modification exhibits steric interactions with amino acid residues in the active site of 3'- and 5'-exonuclease, leading to enhanced stability. These combined data indicate that the 2'-modified-m3U nucleotides can be used as a promising tool to enhance the stability, silencing efficiency, and drug-like properties of antisense/siRNA-based therapeutics.


Assuntos
Ácidos Nucleicos , Uridina , Exonucleases/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/química , RNA/química , RNA Interferente Pequeno/química , Uridina/análogos & derivados , Uridina/química , Uridina/farmacologia
20.
Mol Ther ; 32(3): 637-645, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38204163

RESUMO

N-Acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) therapies have received approval for treating both orphan and prevalent diseases. To improve in vivo efficacy and streamline the chemical synthesis process for efficient and cost-effective manufacturing, we conducted this study to identify better designs of GalNAc-siRNA conjugates for therapeutic development. Here, we present data on redesigned GalNAc-based ligands conjugated with siRNAs against angiopoietin-like 3 (ANGPTL3) and lipoprotein (a) (Lp(a)), two target molecules with the potential to address large unmet medical needs in atherosclerotic cardiovascular diseases. By attaching a novel pyran-derived scaffold to serial monovalent GalNAc units before solid-phase oligonucleotide synthesis, we achieved increased GalNAc-siRNA production efficiency with fewer synthesis steps compared to the standard triantennary GalNAc construct L96. The improved GalNAc-siRNA conjugates demonstrated equivalent or superior in vivo efficacy compared to triantennary GalNAc-conjugated siRNAs.


Assuntos
Doenças Cardiovasculares , Hepatócitos , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Análise Custo-Benefício , RNA de Cadeia Dupla , Acetilgalactosamina/química , Proteína 3 Semelhante a Angiopoietina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...